Analytical and numerical investigation of the Fredholm integral equation for the heat radiation problem
نویسندگان
چکیده
This article deals with the mathematical and the numerical aspects of the Fredholm integral equation of the second kind arising as a result of the heat energy exchange inside a convex and non-convex enclosure geometries. Some mathematical results concerning the integral operator are presented. The Banach fixed point theorem is used to guarantee the existence and the uniqueness of the solution of the integral equation. For the non-convex geometries the visibility function has to be taken into consideration, then a geometrical algorithm is developed to provide an efficient detection of the shadow zones. For the numerical simulation of the integral equation we use the boundary element method based on the Galerkin discretization scheme. Some iterative methods for the discrete radiosity equation are implemented. Several twoand three-dimensional numerical test cases for convex and non-convex geometries are included. This give concrete hints which iterative scheme might be more useful for such practical applications. 2005 Elsevier Inc. All rights reserved. 0096-3003/$ see front matter 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2005.07.017 * Corresponding author. E-mail addresses: [email protected] (N. Qatanani), moni@mathematik. uni-stuttgart.de (M. Schulz). 150 N. Qatanani, M. Schulz / Appl. Math. Comput. 175 (2006) 149–170
منابع مشابه
Homotopy approximation technique for solving nonlinear Volterra-Fredholm integral equations of the first kind
In this paper, a nonlinear Volterra-Fredholm integral equation of the first kind is solved by using the homotopy analysis method (HAM). In this case, the first kind integral equation can be reduced to the second kind integral equation which can be solved by HAM. The approximate solution of this equation is calculated in the form of a series which its components are computed easily. The accuracy...
متن کاملAnalytical and numerical investigation of heat and mass transfer effects on magnetohydrodynamic natural convective flow past a vertical porous plate
The aim of this investigation is to study the effect of hall current on an unsteady natural convective flow of a viscous, incompressible, electrically conducting optically thick radiating fluid past a vertical porous plate in the presence of a uniform transverse magnetic field. The Rosseland diffusion approximation is used to describe the radiative heat flux in the energy equation. Analytical a...
متن کاملA meshless method for optimal control problem of Volterra-Fredholm integral equations using multiquadratic radial basis functions
In this paper, a numerical method is proposed for solving optimal control problem of Volterra integral equations using radial basis functions (RBFs) for approximating unknown function. Actually, the method is based on interpolation by radial basis functions including multiquadrics (MQs), to determine the control vector and the corresponding state vector in linear dynamic system while minimizing...
متن کاملA Successive Numerical Scheme for Some Classes of Volterra-Fredholm Integral Equations
In this paper, a reliable iterative approach, for solving a wide range of linear and nonlinear Volterra-Fredholm integral equations is established. First the approach considers a discretized form of the integral terms where considering some conditions on the kernel of the integral equation it is proved that solution of the discretized form converges to the exact solution of the problem. Then th...
متن کاملNumerical Solution of a Free Boundary Problem from Heat Transfer by the Second Kind Chebyshev Wavelets
In this paper we reduce a free boundary problem from heat transfer to a weakly Singular Volterra integral equation of the first kind. Since the first kind integral equation is ill posed, and an appropriate method for such ill posed problems is based on wavelets, then we apply the Chebyshev wavelets to solve the integral equation. Numerical implementation of the method is illustrated by two ben...
متن کاملNUMERICAL SOLUTION OF LINEAR FREDHOLM AND VOLTERRA INTEGRAL EQUATION OF THE SECOND KIND BY USING LEGENDRE WAVELETS
In this paper, we use the continuous Legendre wavelets on the interval [0,1] constructed by Razzaghi M. and Yousefi S. [6] to solve the linear second kind integral equations. We use quadrature formula for the calculation of the products of any functions, which are required in the approximation for the integral equations. Then we reduced the integral equation to the solution of linear algebraic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied Mathematics and Computation
دوره 175 شماره
صفحات -
تاریخ انتشار 2006